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LETTER TO THE EDITOR 

On the 1/N corrections to the Green functions of random 
matrices with independent entries 

A Khorunzhy, B Khoruzhenko and L Pastur 
Malhematical Division. Lnstitute for Low Tempemre Physics, 47 Lenin Ave, 310164. Kharkiv, 
Ukraine 

Received 9 September 1994 

Abshact. We propose a general approach to the construction of I/N,corrections to the Green 
function CN(Z) of the bnsembles of random real-symmetric and'H&itian N k N matrices with 
independent entries Hk,,. By this approach we study the correlation function CN(ZI. zz) of the 
normalized trace N-ITr GN assuming that the average of IHk,1I5 is bounded. We found that 
to the leading order CN(ZI, 22) = N - Z F ( ~ ~ ,  a). where F.(zl, zz) only dipends on the second 

~ and the fourth moments of H ~ J .  For the correlation function of the density of energy levels we 
obtain an expression which, in the scaling limit only depends on the second moment of Hk,,. 
This can be viewed as supporting the universality conjec& of random mavix theory. 

~ 

Random N x N matrices with independent entries were introduced by Wigner [I]. The 
majority of the rigorous results for dese matrices concern the proof of convergence 
of the density of their eigenvalues to the celebrated Wigner semicircle law and 
its generalization. known as the deformed semicircle law [2-4]. These non-random 
limiting eigenvalue distributions are completely determined by the two first moments of 
the probability distribution of random matrix entries. 

Much less well known are the large-N corrections, in particular, their dependence on 
the probability distribution of the entries. The aim of this letter is to present a rigorous 
approach to the systematic construction of the large-N corrections for moments of the Green 
functions of respective random matrices. 

We consider an ensemble of real-symmehic N x N random matrices which, in the 
particular case of the Gaussian distributed entries, possessing the orthogonal invariance 
property (the respective ensemble is h o w n  as the Gaussian orthogonal ensemble (GOB) and 
is an archetype model in the field r.51). Thus, our random matrices H = { H ~ J ] & = ,  are 
specified by relations 

. .  - 
Here WWJ, k 6 1, are independent random variables such that: (i) = 0; (ii) Wf.( e 
U'; (ii) W& - 3(W2J2 6 C, where the bar denotes averaging 
over the respective probability distribution and U, U and C are N-independent. Thus W~J'S 
may have different probability distributions for different p a k ( k ,  I ) ,  but their second and 
follah moments have to be the same. 
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We denote by GN(z) = {Gi,x(z)}&, the Green function GN(z) = ( H N ~ - z ) - ’ ,  Jm I # 
Gk,x(z). It is 0, of our matrices and by (GN(z)) its normalized trace (GN(z)) = 1/N 

known [4,6] that the moments of (GN(z)) factorize. Namely, if 

then 

i=I  

In particular, the correlation function 

C N ~ Z I .  22) = (GN(ZI))(GN(ZZ)) - ( G N ( z I ) )  ( G ~ ( 2 2 ) )  (4) 

for Im 21, Im 22 # 0 is of the order of l /NZ as N + CO. 

Our aim is to construct the expansion of m$’(zl, . . . , z,) in powers of I/N. We outline 
the main idea and find, as an example, theexplicit form of the l /NZ Correction to cN(Z1,22).  
We also discuss some implications of our results. 

Our approach is an adaptation and extension of that proposed in [71 for studying spectral 
characteristics of a certain class of random finite-difference operators of order R, acting in 
12(Zd) @ C” in the limiting cases when one of the parameters R ,  n, or d tends to infinity. 
The main idea is to derive certain identities for the moments m$’(zl,. . . , zp) and then, 
treating the whole set of these relations as an equation in an appropriate linear space, to 
compute the moments in each order of 1/N by iterating this equation. 

To derive the relations let us rewrite (2) as 1/N ELl G ~ , ~ ( z I )  nfA(G~(2i ) )  and replace 
G ~ , ~ ( Z I )  by the RHS of the resolvent identity Gk.k(zI) = -1/z1+ 1/21 E,”=, H ~ , I G ~ , ~ ( Z I ) .  
We obtain .. 

where for p = 0 we set mg) = ~ 1 .  Now we average in the second term of the RHS of (5 )  
over the random variable H ~ J  by using another resolvent identity 

GmC = &m,n - [ e ; m . k G ~ , n  - em.iGk.n]fik,i(l + &.1)/2 

where 6 = G I H l , , = ~ .  Iterating (5) several times we represent y y  matrix element of GN(z) 
as a sum of powers of H ~ J  multiplied by matrix elements of GN and of a power of 
say H;,, multiplied by a sum of matrix elements of both Green functions G N  and 6~ (a 
is determined by the number of iterations). The inequality 

(6) 

IGk,,(z)l < IIGNII < Ibz l - ’  (7) 

and analogous inequality for 6~ allows us to estimate the average of the latter by IHk.l(u 
(which is proportional to l /NnP according to (1)) multiplied by a power of [Im z1-l and 
by some absolute constant. Since &N and Ha.1 are independent, all other terms in this 
representation will have the form of moments of matrix elements of SN muciplied by 
moments of Hk.1 whose order is smaller than a. At last, we return back from GN to GN 
by using the identity that differs from (6) by interchanging GN and &N and’ replacing Hk.! 
by -Hk,l. We obtain the identity 

(8) m$) = (A”)(P) f f;’. 
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Here A is the linear operator defined as 

m in the Banach space B of bounded sequences (m(p)}p=l, llmll = supp>l uPlm(p)l. f,$“ for 
every p is a sum of moments whose form is different from (2) .  

If IIm zil > 2u, then IlAIl < 2u/lIm zil < 1, the operator 1 - A is invertible and 
(8) has a unique solution. Since according to (7) the moments (2) are bounded above by 
nb, [Im zil-I, this solution coincides with (m(p) ( z l , .  . . , z , ) }E ,  under the above condition 
lImZil > 2u. 

Furthermore, to the leading order ff’ = - 6 p , ~ / z ~  and therefore (cf (3)) 

where r ( z )  = ( -2  -k m ) / 2 u 2  isthe Stieltjes transform of the semicircle law, i.e. 
a-’h r ( E  +io) = +-/%U2; where +$ = Jm. 

Next orders of ff’ in the Gaussian case are given by expresgions 

etc. We see that moments of the form different from (2) do appear in these expressions. 
These new moments of can be found by an argument analogous to that for m$). i.e. by 
deriving equations similar to (8). In the general case there are additional terms in each 
order of 1 / N .  They can be handled analogously (see, for example, the first term in the RHS 
of (10) below). Therefore, solving (8) and these ‘higher order’ equations step by step in 
each order of l / N  we obtain corrections to m$) for any p .  ’ ’ 

For the Gaussian entries 1/N corrections were studied in the physical paper [8] based 
on the formal perturbation theory with respect to H ~ J  and the diagrammatic technique. This 
approach is an adaptation of respective technique developed in [9] in order to construct 
the l/N-expansion of the Green function moments of the random operator describing a 
disordered system on Zd with N orbitals at each site. It is not an easy problem to extend 
this technique (especially in its rigorous version) to the non-Gaussian case. In comparison 
with this our approach is much less sensitive to the type of probability distribution of 
Hk,,. Moreover, the complicated and cumbersome combinatorial problem of rearranging of 
diagrams does not appear. In particular, the ‘dressing’ procedure replacing the ‘bare’ Green 
function -l/z by IimN,, (GN(z ) )  is automatic in our approach. 

This is especially evident in the computation of the two-point correlation function (4). 
Here we can simplify our general procedure because in this case it is sufficient to iterate 
only the few first relations of the infinite system (8). Namely, if as before, IIm zil > 2u, 
then 

. . .  

Due to the factor 1/N2 in front of the first and the second terms of the RHS of this relation 
we can replace respective averages in these terms by their limiting (zero-order) values given 
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by the first term in the RHS of (8). We obtain after some algebra 

c N ( Z I ,  z2) = N - Z F C ~ ] ,  z2) + 0 ( ~ - 5 / 2 )  (11) 

+o(N-~/z )  (12) 

where f l  = 1. 
Notice that by an analogous argument we can also find 1 /N  corrections to the N = w 

limit of the Green functions of an ensemble of the Hermitian random matrices. For instance, 
let 

, .  

Hk.1 = N- l / z (Xk , i  + iYk.1) k ,  1 = 1.. . N (13) 
where Xb r = X, > and YD I = -fi ' are indeuendent for k b 1 random variables such 

2 - ~- 2' - -  2 - -  
X&-3(X&) = O X .  Y&-3(Y:l) =uy,  OX+UY = u , i f k c l ,  andX2,k-3(Xi,k) = U  

and (iv) sup,,, IXk./15 + lYk.115 6 C c 00, where U ,  U, and C &!-independent. Then the 
two-point corklation function of 1/NTrGN(z) is given by (11) and (12) with ,3 = 2. 

Above we have presented the scheme of rigorous construction of I J N  corrections (in 
fact expansions) for moments of normalized traces of the Green functions of random 
matrix ensembles (1) and (13). Now we use our result to draw certain non-rigorous 
conclusions on the form of the leading term of the correlation function S N ( E I ,  E2) of 
the density of states (DOS) ~ N ( E )  = N-'TrG(H - E )  6 (6(H - E ) } .  Since pnr(E) = 
I/R 1iQLa I ~ ( G N ( E  + iE)) E ZE[GN(Z)] ,  we see that to obtain S N ( E I ,  Ez)  we have to 
use (11) and (12) outside the domain l h z l  > 2u where they were rigorously proved. 
Nevertheless, since the function F(z1, Z Z )  given by (12) can obviously be continued up to 
the real axis with respect to both the variables ZI and zz we can apply the operations ZE, and 
I=%, E ,  # EZ to this expression. It means that we are going to compute the leading term 
of the DOS correlation function by first performing the limit N -+ 03 and then the limits 
cl, €2 J, 0. This order of limiting transitions is the inverse with respect to that prescribed 
by the definition of this correlation function. 

The resulting expression for the correlation function is . 

For the Gaussian orthogonal and unitary ensembles (GOE and CUE) U = 0 and we recover 
the result 

obtained in [IO, 111. We see that in a general non-Gaussian case the respective expression 
depends not only on the second moment of random enbies but also on the fourth moment 
via U .  
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Now let us consider the so-called scaling limit of &(El,  Ez), when El ,  E2 + 
E ,  N ( E I  - Ez) + s [51. We obtain a remarkably simple expression: limN(E,-E2),, 
S, (E l ,Ez )  = - l / ( & ~ ~ s ~ ) .  According to Wigner and Dyson (see, for example, [5])  
the exact large-s asymptote of the DOS correlation functions of the Gaussian ensembles 
are: -l/(n2s2) (GOE) and - sin2np(E)s/(n2s2) (CUE). Comparing these expressions with 
ours we see that our procedure of computing of the correlation function yields, for the 
general case, an expression coinciding with the large-s asymptote of the Gaussian correlation 
function smoothed over the energy intervals As >> p- ' (E) .  This can be regarded as support 
of the universality conjecture of random matrix theory [5]. 

Let us mention three more supports of this conjecture. The first one [12] concerns the 
so-called sparse (or diluted) random matrices whose entries are independently distributed 
random variables such that Pr{Hk,r = 0) = p / N .  The authors used the Grassman integral 
technique and found the Wigner-Dyson universal form of the DOS correlator if p is large 
enough. The second was obtained recently [13] for the completely different ensemble, 
known as the unitary invariant ensemble whose probability density is 2-' exp[-NV(H)], 
where V(i) is an even polynomial. Based on an approach known as the orthogonal 
polynomial technique, the authors established a number of interesting results concerning 
the eigenvalue statistics of this ensemble, in particular, the relation (15) for B = 2. The 
third was obtained by the present authors for the ensemble H = xi=, rfi(., efi).$fi, where 
z$ and .$$ = [$;, . . . , $1 are independent identically-distributed random variables. For 
this ensemble which was introduced in [I41 we obtained the analogue of (11) and (12) 
and showed that its scaling limit is the same as above. These results will be published 
elsewhere. 

This work was supported in part by the International Science Foundation under grant no 
U2SOOO and the State Committee for Science and Technology of Ukraine under grant no 
3/1/132. ~ ~ 
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